Publication

For a complete portfolio, see my CV or visit my Google Scholar profile.

Preprints & In press

  1. Liu, J., Wang, Q., Zhan, W., Lian, X., & Gentine, P. (in press). When and where soil dryness matters to ecosystem photosynthesis. Nature Plants. Preprint
  2. Liu, J., Neogi, S., & Lai, D. Y. F. (in press). Ecosystem-scale carbon dioxide, methane and water fluxes from a freshwater fishpond: temporal variability, drivers, and implications for nature-based climate solutions. Earth Future.
  3. Lian, X., Liu, J., Kornhuber, K., & Gentine, P. (in press). Rossby waves as large-scale natural experiments of ecosystem response to compound climatic stressors. Nature Geoscience.
  4. Giardina, F., Liu, J., Seneviratne, S., Stocker, B., & Gentine, P. (3rd-round revision). Groundwater rivals aridity in determining global photosynthesis. Nature Communications. Preprint
  5. Huang, Y., Lian, X., Skulovich, O., Liu, J., Shamekh, S., & Gentine, P. (preprint). Large and increasing soil moisture impact on Western European heatwave. Preprint

Journal articles (selected)

  1. Liu, J., Ryu, Y., Luo, X., Dechant, B., Keenan, T., Gentine, P., Li, B., Li, X., Prentice, C. I., Stocker, B., & Harrison, S. (2024). Evidence for widespread thermal acclimation of canopy photosynthesis. Nature Plants, 10. doi:10.1038/s41477-024-01846-1
  2. Li, X., Ryu, Y., Xiao, J., Dechant, B., Liu, J., Li, B., Jeong, S., & Gentine, P. (2023). New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during the 2020 western U.S. heatwave. Science Advances, 9(31). doi:10.1126/sciadv.adi0775.
  3. Nathaniel, J., Liu, J., & Gentine, P. (2023). MetaFlux: Meta-learning global carbon fluxes from sparse spatiotemporal observations. Scientific Data, 10(1). doi:10.1038/s41597-023-02349-y
  4. Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y., & Li, X. (2023). BESSv2.0: A satellite-based and coupled-process model for quantifying long-term global land–atmosphere fluxes. Remote Sensing of Environment, 295. doi:10.1016/j.rse.2023.113696
  5. Liu, J., Valach, A., Baldocchi, D., & Lai, D. Y. F. (2022). Biophysical controls of ecosystem-scale methane fluxes from a subtropical estuarine mangrove. Global Biogeochemical Cycles, 36. doi:10.1029/2021GB007179
  6. Liu, J., Zhou, Y., Valach, A., Shortt, R., Kasak, K., Rey-Sanchez, C., Hemes, K. S., Baldocchi, D., & Lai, D. Y. F. (2020). Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Global Change Biology, 26(9). doi:10.1111/gcb.15247
  7. Liu, J., & Lai, D. Y. F. (2019). Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agricultural and Forest Meteorology, 278. doi:10.1016/j.agrformet.2019.107644
  8. Liu, J., Hartmann, S. C., Keppler, F., & Lai, D. Y. F. (2019). Simultaneous abiotic production of greenhouse gases (CO2, CH4, and N2O) in subtropical soils. Journal of Geophysical Research: Biogeosciences, 124(7). doi:10.1029/2019JG005154
  9. Liu, J., Chen, H., Zhu, Q., Shen, Y., Wang, X., Wang, M., & Peng, C. (2015). A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview. Atmospheric Environment, 115. doi:10.1016/j.atmosenv.2015.05.019

Book chapters

  1. Liu, J., Schäfer, K.V.R., & Lai, D. Y. F. (2022). Biosphere-Atmosphere Exchange of CO2 and CH4 in Mangrove Forests and Salt Marshes. In Lee, J., Marchand, C., Ouyang X., & Lai, D. Y. F. (Eds.), Carbon Mineralization in Coastal Wetlands. Elsevier. doi:10.1016/B978-0-12-819220-7.00009-1

Software Tools

  1. Irvin, J., Zhou, Y., Lu, F., Liu, V., Zhou, S., McNicol, G., & Liu, J. (2021). FluxGapfill: A Python Interface for Machine-learning Driven Methane Gap-filling. Version 0.2.0. doi:10.5281/zenodo.5515761